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The endangered whale shark (Rhincodon typus) is the largest fish
on Earth and a long-lived member of the ancient Elasmobranchii
clade. To characterize the relationship between genome features
and biological traits, we sequenced and assembled the genome of
the whale shark and compared its genomic and physiological fea-
tures to those of 83 animals and yeast. We examined the scaling
relationships between body size, temperature, metabolic rates,
and genomic features and found both general correlations across
the animal kingdom and features specific to the whale shark ge-
nome. Among animals, increased lifespan is positively correlated
to body size and metabolic rate. Several genomic traits also sig-
nificantly correlated with body size, including intron and gene
length. Our large-scale comparative genomic analysis uncovered
general features of metazoan genome architecture: Guanine and
cytosine (GC) content and codon adaptation index are negatively
correlated, and neural connectivity genes are longer than average
genes in most genomes. Focusing on the whale shark genome, we
identified multiple features that significantly correlate with life-
span. Among these were very long gene length, due to introns
being highly enriched in repetitive elements such as CR1-like long
interspersed nuclear elements, and considerably longer neural
genes of several types, including connectivity, activity, and neuro-
degeneration genes. The whale shark genome also has the second
slowest evolutionary rate observed in vertebrates to date. Our
comparative genomics approach uncovered multiple genetic fea-
tures associated with body size, metabolic rate, and lifespan and
showed that the whale shark is a promising model for studies of
neural architecture and lifespan.
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The relationships between body mass, longevity, and basal
metabolic rate (BMR) across diverse habitats and taxa have

been researched extensively over the last century and have led to
generalized rules and scaling relationships that explain many
physiological and genetic trends observed across the tree of life.
While the largest extant animals on the planet are aquatic, the
impact of marine habitats on body size and other physiological
and genetic characteristics is only beginning to be discovered (1).
In an effort to better understand the selective pressures imposed
on body size in marine environments, studies of endothermic
aquatic mammals have shown that selection for larger body sizes
has been driven by the minimization of heat loss (2). In ecto-
thermic vertebrates, however, the relationship between envi-
ronmental temperature and body size is more complex. In these
species, metabolic rate is directly dependent on temperature,
and decreased temperatures are correlated with decreased

BMRs, decreased growth rates, longer generational times, and
increased body sizes (3, 4).
The whale shark (Rhincodon typus) is the largest extant fish,

reaches lengths of 20 m (5) and 42 tons in mass (6) and has a
maximum lifespan estimated at 80 y (6). Worldwide populations
have been declining, and the whale shark has been classified as
an endangered species by the International Union for Conser-
vation of Nature. Whale sharks are one of three species of filter-
feeding sharks that use modified gill rakers to sieve plankton and
small nektonic prey from the water column in a method
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We sequenced and analyzed the genome of the endangered
whale shark, the largest fish on Earth, and compared it to the
genomes of 84 other species ranging from yeast to humans.
We found strong scaling relationships between genomic and
physiological features. We posit that these scaling relation-
ships, some of which were remarkably general, mold the ge-
nome to integrate metabolic constraints pertaining to body
size and ecological variables such as temperature and depth.
Unexpectedly, we also found that the size of neural genes is
strongly correlated with lifespan in most animals. In the whale
shark, large gene size and large neural gene size strongly
correlate with lifespan and body mass, suggesting longer gene
lengths are linked to longer lifespans.
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convergent with that of the baleen whales (1). Unlike the two
smaller filter-feeding shark species (Cetorhinus maximus, Mega-
chasma pelagios) that inhabit colder temperate waters with in-
creased prey availability, whale sharks have a cosmopolitan
tropical and warm subtropical distribution and have rarely been
sighted in areas with surface temperatures less than 21 °C (7–9).
However, recent global positioning system (GPS) tagging studies
have revealed that they routinely dive to mesopelagic (200 to
1,000 m) and bathypelagic (1,000 to 4,000 m) zones to feed,
facing water temperatures less than 4 °C (10). Observations of
increased surface occupation following deeper dives have led to
the suggestion that thermoregulation is a primary driver for their
occupation of the warmer surface waters (7, 11). Since larger
body masses retain heat for longer periods of time, the large
body mass of whale sharks may slow their cooling upon diving
and maximize their dive times to cold depths, where food is
abundant, and could thus play a key role in metabolic regulation.
Body size, environmental temperature, metabolic rate, and

generation time are all correlated with variations in evolutionary
rates (12, 13). Since many of these factors are interconnected,
modeling studies have shown that observed evolutionary rate
heterogeneity can be predicted by accounting for the impact of
body size and temperature on metabolic rate (14), suggesting
that these factors together drive the rate of evolution through
their effects on metabolism. Consistent with these results,
brownbanded bamboo shark, cloudy catshark, and elephant fish
have the slowest evolutionary rates reported to date (15, 16).
Moreover, genome size and intron size have also been linked to
metabolic rate in multiple clades. Intron length varies between
species and plays an important role in gene regulation and splice-
site recognition. In an analysis of amniote genomes, intron size
was reduced in species with metabolically demanding powered
flight and correlated with overall reductions in genome size (17,
18). However, since most previous studies were limited by poor
taxonomic sampling and absence of genome data for the deepest
branches of the vertebrate tree, comprehensive comparative
genomic analyses across gnathostomes are necessary to gain a
deeper understanding of the evolutionary significance of the
correlations between genome size, intron size, and metabolic
demands.
Here we sequenced, assembled, and analyzed the genome of

the whale shark and compared its genome and biological traits to
those of 84 eukaryotic species with a focus on gnathostomes such
as fishes, birds, and mammals. In particular, we identified scaling
relationships between body size, temperature, metabolic rates,
and genomic features and found general genetic and physiolog-
ical correlations that span the animal kingdom. We also exam-
ined characteristics unique to the whale shark and its slow-
evolving, large genome.

Results
The Whale Shark Genome. The DNA of an R. typus individual was
sequenced to a depth of 164× using a combination of Illumina
short-insert, mate-pair, and TruSeq Synthetic Long Read
(TSLR) libraries (SI Appendix, Tables S1, S2, S12, and S13),
resulting in a 3.2-Gb genome (SI Appendix, Fig. S1 and Table S4)
with a scaffold N50 of 2.56 Mb (SI Appendix, Tables S2, S5, and
S6). A sliding-window approach was used to calculate guanine
and cytosine (GC) content and resulted in a genome-wide av-
erage of 42%, which is similar to the coelacanth and elephant
fish (SI Appendix, Fig. S2). Roughly 50% of the whale shark
genome is composed of transposable elements (TEs), which were
identified using both homology-based and ab initio approaches
(19, 20). Of these, long interspersed nuclear elements (LINEs)
made up 27% of the total TEs identified (SI Appendix, Table S7).
A combination of homology-based and ab initio genome anno-
tation methods (21, 22) resulted in a total of 28,483 predicted
protein-coding genes (SI Appendix, Tables S8–S11).

Correlation of Physiological Characteristics with Genome Features
across 85 Taxa. Body mass is intrinsically linked to physiological
traits such as lifespan and BMR (23). To better understand how
genomic traits correlate with physiological and ecological pa-
rameters such as body weight, lifespan, temperature, and meta-
bolic rate, we compared the whale shark to 83 animals and yeast
(SI Appendix, Tables S15 and S16) using physiological and ge-
nomic data (Fig. 1 and SI Appendix, Figs. S3–S6 and Table S16).
Across the 85 species examined, we find a strong positive cor-
relation with significant P values between the log-transformed
values for body weight and maximum lifespan (Spearman’s cor-
relation coefficient ρ = 0.787, Fig. 2A and SI Appendix, Table
S17A) and BMR (SI Appendix, Table S17A and Fig. S9A, ρ =
0.962, exponent B = 0.688; SI Appendix, Fig. S24; n = 84 species,
yeast is excluded), consistent with previous reports (23). Com-
parisons of physiological traits and genome characteristics across
these 84 animals and yeast revealed several genetic features that
also scaled with body weight. Among these, total gene length,
intron length, and genome size all show a moderate statistical
correlation with body mass, lifespan, and BMR (ρ = 0.4 to 0.7)
(Fig. 2 B–E and SI Appendix, Table S17A). These results are
consistent with previous findings of decreased intron size cor-
relating with increased metabolic rates. Furthermore, genome
size and relative intron size are strongly correlated (ρ = 0.72)
(Fig. 2B and SI Appendix, Table S17A), with the three sharks and
the pika being notable outliers. Moreover, genome size, mea-
sured as golden path length, scales with gene size, measured as
the summed length of exons and introns per gene (power law
exponent B = 1.31, SI Appendix, Fig. S25). Additionally, we find
that, unlike in bacteria (24) and crustaceans (25), genome size in
Chordates scales positively with temperature (SI Appendix, Fig.
S9D; B = 0.97, SI Appendix, Fig. S26).
Our comparisons of genome features revealed that exon

length is remarkably constant across animals, regardless of ge-
nome size or intron length (Fig. 1C). Early observations of this
phenomenon across small numbers of taxa led to the suggestion
that the splicing machinery imposes a minimum exon size while
exon skipping begins to predominate when exons exceed ∼500
nucleotides in length (26). Interestingly, we also find a tight
correlation (ρ = 0.975) between the overall GC content and
GC3, the GC content of the third codon position (SI Appendix,
Fig. S9B and Table S17), while both features are negatively
correlated with the codon adaptation index (CAI) (ρ = −0.804
and ρ = −0.837, respectively; Fig. 2 G and H and SI Appendix,
Table S17) in Eukaryota and negatively correlated with the ge-
nome size in Mammalia (ρ = −0.440 and ρ = −0.456, respec-
tively) (SI Appendix, Table S17). These results are partially
supported by previous research, which showed that GC3 is
negatively correlated with body mass, genome size, and species
longevity within 1,138 placental mammal orthologs (27). How-
ever, our results using whole-genome data do not support the
GC3 correlation with body mass and longevity (ρ = 0.074 and
ρ = −0.267; SI Appendix, Table S17). Thus, exon and intron
length may affect body mass and longevity through a strong as-
sociation between GC content and coding sequence length (28).
Additionally, CAI and intron size are moderately positively
correlated (ρ = 0.493; Fig. 2I and SI Appendix, Table S17). Since
the CAI and codon usage bias have an inverse relationship, this
is consistent with the negative correlation between intron length
and codon usage bias in multicellular organisms (29).

Whale Shark Longevity and Genome Characteristics. The allometric
scaling relationships between longevity, mass, temperature, and
metabolic rate are well established (23), and the long lifespan of
the whale shark can be explained by its large mass and the ex-
tremely low mass- and temperature-adjusted BMR (Fig. 1 H
and L). There has been considerable debate in the literature over
the evolutionary causes and consequences of genome size,
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A
GC content

B CAI

C Exon length (bp)

D CDS length (kb)

E Relative intron length

F Genomesize
109bp

G The maximum lifespan
(year)

H Body weight
Log10gram

I The maximum lifespan
controlledbyweight0.25

J Temperature (celsius)

K Basal metabolic rate
Log10BMRx1018



L Mass adjusted
basal metabolic rate
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Fig. 1. Comparative genomic analysis across 85 species reveals traits linked to lifespan and bodyweight. (Top) Image of a whale shark. (Bottom) The phy-
logenetic tree was constructed using the NCBI common tree (https://www.ncbi.nlm.nih.gov/Taxonomy/CommonTree/wwwcmt.cgi) without divergence times.
The rows show the following values in 85 species: five genomic parameters (A–E), golden path length (F), maximum lifespan (G), body weight (H), maximum
lifespan controlled by weight0.25 (I), body temperature (optimal temperatures for cold-blooded animals) (J), basal metabolic rate (yeast is excluded) (K), and
basal metabolic rate adjusted by weight (yeast is excluded) (L). The exon length (C) shows length of exons in the coding region. The exon lengths of yeast
(median length = 1,032 bp) and fruit fly (median length = 217 bp) and the weight of yeast (6E-14 kg), fruit fly (4.43E-10 kg), and nematode (1.2E-09 kg) are
not shown here as they are too extreme to fit in each chart. The relative intron length (E) was calculated by dividing the total intron length between the first
coding exon and the last coding exon by the CDS length. The nine colors of boxes and bars indicate biological classification (gray: Hyperoartia, Ascidiacea,
Chromadorea, Insecta, and Saccharomycetes; turquoise: Chondrichthyes (the cyan color indicates whale shark); light blue: Actinopterygii; aquamarine: Sar-
copterygii; dark green: Amphibia; light green: Reptilia; dark yellow: Aves; orange: Mammalia).
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particularly as it relates to BMR. At 3.2 Gb, the whale shark
genome is significantly larger than the elephant fish genome,
although both exon number and size are comparable. Similar to
the brownbanded bamboo shark and cloudy catshark, the whale
shark is notable among fish for its long introns (Fig. 1E and SI
Appendix, Figs. S3E and S4E). Analyses of single-copy ortholo-
gous gene (SCOG) clusters did not reveal any large intron gains
or losses in whale shark, brownbanded bamboo shark, or cloudy
catshark (SI Appendix, Fig. S10), although retrotransposon

analysis revealed a significant expansion of CR1-like LINEs and
Penelope-like elements within introns (Fig. 3A and SI Appendix,
Figs. S11–S15). The CR1-like LINEs are the dominant family of
TEs in nonavian reptiles and birds (30). In these three sharks,
the proportion of CR1-like LINE elements accounts for more
than 10% of the total intron length (SI Appendix, Fig. S13C),
which is higher than that of the anole lizard, a species known for
expanded CR1-like LINEs (30). The total length of intronic re-
petitive elements is as great as in the opossum genome, known to
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Fig. 2. Scaling relationships between genomic and physiologic properties across 85 species. For each plot, the properties on the x axis and y axis were used to
calculate the 481 Spearman’s rank correlation coefficient: (A) Log10(Maximum lifespan) and Log10(Weight); (B) genome size and relative intron length; (C)
maximum lifespan and relative intron length; (D) Log10(Weight) and Log10(Relative intron length); (E) Log10(Genome Size) and Log10(Weight); (F) genome
size and CAI; (G) GC content and CAI; (H) GC3 and CAI; and (I) intron length between coding exons and CAI. All P values and rho (ρ) values are shown at the top
of each plot. Overlapping species names in the same layer were not plotted. The nine dot colors indicate biological classification (gray: Hyperoartia, Asci-
diacea, Chromadorea, Insecta, and Saccharomycetes; turquoise: Chondrichthyes [the cyan color indicates whale shark]; light blue: Actinopterygii; aquamarine:
Sarcopterygii; dark green: Amphibia; light green: 484 Reptilia; dark yellow: Aves; orange: Mammalia).
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A

B C

D

Fig. 3. Repetitive elements, evolutionary rate model, and flow of genes in the whale shark genome. (A) Each pie chart summarizes the lengths of predicted
intronic repetitive elements (labeled at the top of pies). Values from 84 animals were averaged across six classes (Mammalia, Aves, Reptilia, Amphibia,
Sarcopterygii, Actinopterygii). The whale shark and the elephant fish are listed separately. Yeast was excluded from these analyses. (B) All pairwise distances
from sea lamprey were calculated using the R-package “ape” (32). The species were ordered by the pairwise distances. The eight bar colors indicate biological
classification (turquoise: Chondrichthyes (the cyan color indicates whale shark); light blue: Actinopterygii; aquamarine: Sarcopterygii; dark green: Amphibia;
light green: Reptilia; dark yellow: Aves; orange: Mammalia). (C) While most genes (∼58%) in the whale shark genome are ancient, some (∼5.4%) are of
intermediate age, a few (∼2%) are young, and a significant fraction (∼34.6%) are new. (D) Maximum-likelihood phylogenetic tree of 28 species (for orders
with more than one member represented in our 85-species dataset, one species was randomly selected). Bootstrap support values are 100 unless otherwise
marked at the nodes. Terminal branches are colored according to the biological classification (gray: Hyperoartia, Ascidiacea, Chromadorea, Insecta, and
Saccharomycetes; turquoise: Chondrichthyes (the cyan color indicates whale shark); light blue: Actinopterygii; aquamarine: Sarcopterygii; dark green: Am-
phibia; light green: Reptilia; dark yellow: Aves; orange: Mammalia).
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be rich in repetitive elements (31) (SI Appendix, Fig. S11A).
Although the whale shark has the fourth longest repetitive ele-
ments (SI Appendix, Fig. S11A), it has the highest proportion of
LINEs (SI Appendix, Fig. S12B), particularly CR1-like LINEs
and CR1-Zenon like LINEs (SI Appendix, Fig. S13 C and D). In
the whale shark genome, 38% of the CR1-like LINEs, 39% of
the CR1-Zenon like LINEs, and 30% of the Penelope-like ele-
ments are located in intronic regions (SI Appendix, Fig. S14).
Strikingly, most genes (more than 88%) in the whale shark ge-
nome have CR1-like LINE elements within their introns (SI
Appendix, Fig. S15), a proportion higher than in other Chon-
drichthians. Moreover, 56% of whale shark genes also have
LINE1 elements (SI Appendix, Fig. S15). Thus, the whale shark
has a relatively large genome and long introns due to an ex-
pansion of multiple types of repetitive elements.
Codon usage and the evolutionary age of genes are associated

in metazoans (33). Interestingly, two principal component anal-
yses (PCA) of relative synonymous codon usage (RSCU) from 85
and 79 species (6 species having distant codon usage patterns
were excluded), respectively, revealed that the whale shark pat-
tern of RSCU is most similar to that of the coelacanth, with well-
separated patterns of RSCU for each class (SI Appendix, Fig.
S16). While the whale shark genome has a relatively short exon
length (smaller than those of 25 species; SI Appendix, Table S11),
notably, it has a smaller number of exons per gene than all but 3
species (yeast, fruit fly, and brownbanded bamboo shark) (SI
Appendix, Figs. S3B and S4G and Table S11). Thus, the whale
shark coding sequence (CDS) length is shorter than the CDS
length of all species except the brownbanded bamboo shark and
the vase tunicate (Fig. 1D and SI Appendix, Fig. S4D).

Evolutionary Rate and Historical Demography of the Whale Shark.
Analyses of the whale shark genome show that it is the second
slowest evolving vertebrate yet characterized. A relative rate test
and two cluster analyses revealed that the whale shark has a
slower evolutionary rate than those of brownbanded bamboo
shark, of cloudy catshark, and of all other bony vertebrates ex-
amined, including the coelacanth (16) (Fig. 3B and SI Appendix,
Fig. S17 and Tables S18–S20). These results support previous
work predicting a slow evolutionary rate in ectothermic, large-
bodied species with relatively low body temperatures (compared
to similarly sized warm-blooded vertebrates) (14). They also are
consistent with previous studies of nucleotide substitution rates
in elasmobranchs, which are significantly lower than those of
mammals (34, 35).
A phylogenetic analysis of the 175 SCOG clusters from the

whale shark and 27 other animal genomes (Fig. 3D) showed a
divergence of the Elasmobranchii (sharks) and Holocephali
(chimaeras) roughly 333 million years ago (MYA) and of the
Chondrichthyes from the bony vertebrates about 358 MYA
(Fig. 3D), consistent with previous estimates. To better under-
stand the evolutionary history of the genes within the whale
shark genome, we evaluated the age of the whale shark protein-
coding genes based on protein sequence similarity (36). Group-
ing the whale shark genes into four broad evolutionary eras, we
observed that, while the majority (58%) of genes are ancient
(older than 684 MYA), a few (∼5.4%) are middle age (684 to
199 MYA), fewer (∼2%) are young (199 to 93 MYA), and many
(34.6%) are new (93 MYA to present) (Fig. 3C). Normalizing
the number of genes by evolutionary time suggests that gene
turnover is highest near the present time (SI Appendix, Fig. S18).
Examining the age of genes shows that many genes are ancient
and also that many genes appear very young (SI Appendix, Fig.
S19). These results highlight both the conservation of a large part
of the coding genome and the innovative potential of the whale
shark genome, since many new genes have appeared within the
last 93 million years.

Length of Neural Genes and Correlation with Physiological Features.
Gene length has recently emerged as an important feature of
neural genes, as long genes are preferentially expressed in neural
tissues and their expression is under tight transcriptional and
epigenetic control (37). Within 84 animals and yeast, we com-
pared the dimensions of average genes with those of 10 categories
of neural genes (neuronal connectivity, cell adhesion, olfactory
receptors, ion channels, unfolded protein-response–associated
genes, neuronal activity and memory, neuropeptides, homeo-
box genes, synaptic genes, and neurodegeneration) (Fig. 4A and
SI Appendix, Figs. S20 and S21). Interestingly, we found that
neuronal connectivity genes are longer than average genes in
most vertebrates, with the length increase being significant in
whale shark and most mammals, as well as in coelacanth and
platypus (Fig. 4A and SI Appendix, Fig. S21A). Surprisingly, we
found that neural genes are scaled to average genes with an
exponent greater than 1 (B = 1.038, SI Appendix, Fig. S27A),
with the whale shark, brownbanded bamboo shark, and cloudy
catshark showing an extreme lengthening of neural genes (SI
Appendix, Figs. S20, S21, and S27). Moreover, we found that
cell adhesion, ion channels, unfolded protein-response–related
genes, and neurodegeneration genes are increased in length in
the whale shark and two other shark species (Fig. 4B and SI
Appendix, Fig. S28), suggesting that this may be a general fea-
ture of sharks. Finally, neuronal functions are enriched in long
genes in more than 60 species (Fig. 4C and SI Appendix, Table
S21 and Dataset S1).
To determine which genes are linked with three physiological

traits (maximum lifespan, body weight, and BMR), we examined
the correlation of gene size and three physiological traits in
SCOG families. We found 172 SCOG families in which gene
lengths significantly correlated to three physiological traits (SI
Appendix, Tables S22–S24). Gene Ontology (GO) analyses of the
172 SCOG families showed statistical enrichment of biological
processes such as regulation of telomere maintenance via telo-
merase (GO: 0032210—CCT3, CDK7,MAPKAPK5, NAT10, and
XRCC5) and tRNA metabolic processes (GO: 0006399—DDX1,
EEF1E1, KARS, LARS2, NARS2, NAT10, PUS10, RARS2,
RTCB, and ZBTB8OS; Fig. 4D and SI Appendix, Tables S22 and
S23), both of which are associated with longevity and cancer (38,
39). Furthermore, the size of DLD, a gene with proteolytic ac-
tivity and metabolic function (40, 41), significantly correlates
with BMR (ρ = 0.67) (SI Appendix, Fig. S23). These results
suggest that an evolutionary relationship exists between gene size
and several physiological traits size such as body size, metabolic
rate, and lifespan. This holds particularly for genes whose
functions are essential for living long lives, such as telomere
maintenance and metabolic activity.

Discussion
We sequenced and assembled the genome of the whale shark (R.
typus), an endangered species that is the largest extant fish on
Earth. We compared it to the genomes of 84 eukaryotic species,
and related genomic traits to physiological traits and environ-
mental variables such as temperature to understand how eco-
logical constraints shape genomes. Several major findings
emerged from our comparative evolutionary analyses. First, at
3.2 Gb, the relatively large genome of the whale shark is the
second slowest evolving vertebrate genome found to date and
has a striking number of CR1-like LINE transposable elements.
Second, in most genomes, we found that major genomic traits,
including intron length and gene length, scale with body size,
temperature, and lifespan. Some genomic traits are correlated to
metabolic rate, which scales with both animal mass and tem-
perature, thus reflecting both physiology and environment.
These results suggest that ecological variables mold both ge-
nomes and morphology. Third, we found that GC content and
codon adaptation index are negatively correlated. Furthermore,
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while the correlation of GC3 content and overall genomic GC
content had previously been established (42), we extended the
validity of this correlation to a wide range of species, densely
sampling chordate genomes at genome scale. Fourth, unex-
pectedly, we found that neural connectivity genes are substan-
tially longer than average genes. While it has previously been
observed that neural genes are longer than average genes in the
human genome, our comparative analysis has dramatically ex-
tended the range of this observation to more than 80 species.
Interestingly, we found that introns are longer in the shark ge-
nomes than in most other species due to the high proportion of
repetitive elements. Finally, we found that neural genes of sev-
eral types, including neurodegeneration genes, are much longer
than average genes in species with long lifespans.

As a general approach, studying whether distinct quantitative
traits are correlated at vastly different spatial and temporal
scales is an important discovery tool. First, for pairs of traits the
correlation of which was not anticipated, such as intron size and
body weight, the quantification of scaling enables the generation
of mechanistic hypotheses. Second, examining the relationships
between quantitative traits on a large evolutionary scale, as we
have done here in a group of 85 Eukaryotic species centered on
Chordates, enables the identification of the mathematical func-
tions that best describe the relationships between traits. For
some pairs of traits, these functions can be expressed as power
law equations that may be succinctly summarized as scaling ex-
ponents. It should also be noted that, for many of the strongly
correlated traits, there are notable outliers, such as the bowhead
whale, in comparisons of longevity. When traits such as genome

A B

C D

Fig. 4. The relationship between gene length and neural genes and SCOG families with correlations between gene length and maximum lifespan, weight,
and BMR. (A) Neuronal connectivity genes are longer than average genes in 84 animals. The x and y axes show the average gene length and the gene length
of neuronal connectivity-related genes, respectively. The dashed diagonal line represents “y = x.” Spearman’s rho correlation coefficient and P value are
shown in the top right corner of the plot. (B) Of the 12 categories of neural genes that we analyzed in the whale shark genome, several are longer than
average whale shark genes. (C) Most common GO terms are relevant to neural function. GO terms, shown based on the number of species in which they were
found, were computed with Gene Set Enrichment Analysis. (D) Enriched GO functions in SCOG families in which relative intron length positively correlates
with maximum lifespan. For each GO term, black boxes indicate human gene symbols representative of the family.
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size and lifespan correlate, large-scale evolutionary comparisons
can be used to identify the outlier species that are most suited for
addressing particular research questions. Together, these results
show the power of the comparative evolutionary approach and of
mathematical modeling to uncover both general and specific
relationships that reveal how genome architecture is shaped by
size and ecology.

Methods
Sample Preparation and Sequencing. Genomic DNA was isolated from heart
tissue acquired from a 7-y-old, 4.5-m deceased male whale shark from the
Hanwha Aquarium, Jeju, Korea. DNA libraries were constructed using a
TruSeq DNA library kit for the short-read libraries and a Nextera Mate Pair
sample prep kit for the mate-pair libraries. Sequencing was performed using
the Illumina HiSeq2500 platform. Libraries were sequenced to a combined
depth of 164× (SI Appendix, Tables S1 and S2).

Genome Assembly and Annotation. Reads were quality-filtered (SI Appendix,
Table S3), and the error-corrected reads from the short insert size libraries
(<1 kb) and mate-pair libraries (>1 kb) were used to assemble the whale
shark genome using SOAPdenovo2 (43). As the quality of the assembled
genome can be affected by the K-mer size, we used multi-K-mer values
(minimum 45 to maximum 63) with the “all” command in the SOAPdenovo2
package (43). The gaps between the scaffolds were closed in two iterations
with the short insert libraries (<1 kb) using the GapCloser program in the
SOAPdenovo2 package (43). We then aligned the short insert size reads to
the scaffolds using BWA-MEM (44) with default options. Variants were
identified using SAMtools (45) and scaffolds were error corrected by
substituting the short insert read allele. For heterozygous mapped alleles,
the first variant was substituted. Finally, we mapped the Illumina TruSeq
TSLRs to the assembly, corrected the gaps covered by the synthetic long
reads to reduce erroneous gap regions in the assembly (SI Appendix, Tables
S5 and S13), and assessed the genome assembly and genome completeness
using the BUSCO approach (SI Appendix, Table S14) (46).

The GC distribution of the whale shark genome was calculated using a
sliding-window approach. We employed 10-kb sliding windows to scan the
genome and calculate the GC content. Tandem repeats were predicted using
the Tandem Repeats Finder program (version 4.07) (47). TEs were identified
using both homology-based and ab initio approaches. The Repbase database
(version 19.02) (48) and RepeatMasker (version 4.0.5) (19) were used for the
homology-based approach, and RepeatModeler (version 1.0.7) (20) was used
for the ab initio approach. All predicted repetitive elements were merged
using in-house Perl scripts. Two candidate gene sets were built to predict the
protein-coding genes in the whale shark genome using AUGUSTUS (22) and
Evidence Modeler (21), respectively (SI Appendix, 1.7 Annotation of protein-
coding genes).

Genomic Context Calculations. From 85 species (SI Appendix, Table S15), we
computed the following genomic factors: GC3 (GC content at third codon
position), CAI, number and length of coding exon(s), and relative intron
length between the first and last exon (or coding exon). CDS sequences
with premature stop codons and lengths that were not multiples of three
were excluded. The relative intron length was calculated by dividing
the total intron length between first and last exon (or coding exon)
by the CDS length (or messenger RNA length). GC3 was computed
from concatenated third codon nucleotides (49). We measured RSCU
using the method from Sharp et al. (50) and the CAI in a CDS using Sharp
and Li’s method (51) for each of the 85 species. The PCA on RSCU was
performed using the R packages (version 3.3.0) (52) ggplot2 (53) and
ggfortify (54).

Orthologous Gene Family Clustering and Phylogeny Construction. To identify
orthologous gene families among the whale shark and the other 85 species,
we downloaded all pair-wise reciprocal BLASTP results using the “peptide
align feature” in the Ensembl genome database project (release 86) (55). To
generate pair-wise orthologues that were not available in the Ensembl re-
sources, we performed reciprocal BLASTP (56) with the “-evalue 1e-05 -seg
no -max_hsps_per_subject 1 -use_sw_tback” options. From the pair-wise
reciprocal BLASTP results among the 85 species, we generated similarity
matrices by connecting possible orthologous pairs. To constrain the com-
putational load, we did not join additional nodes when the number of
nodes was larger than 1,500. The normalized weights for the similarity
matrix were calculated using the OrthoMCL approach (57). We identified
orthologous gene families using an in-house C++ script based on the Markov

Cluster (MCL) algorithm (58) with inflation index 1.3. A total of 1,556,795
genes were assigned to 245,314 clusters including 209,992 singletons, and
175 single-copy gene families were extracted from 28 species. Multiple se-
quence alignments were performed using MUSCLE 3.8.31 (59) and were
concatenated without gap regions. The phylogenetic tree was constructed
using RAxML 8.2 (60) with maximum likelihood (1,000 bootstraps), using the
PROTCATLG amino acid substitution model (Fig. 3D).

Gene Age Estimation. Phylostratigraphy uses BLASTP-scored sequence simi-
larity to estimate the minimal age of every protein-coding gene. The Na-
tional Center for Biotechnology Information (NCBI) nonredundant database
was queried with a protein sequence to detect the most distant species in
which a sufficiently similar sequence is present and then posit that the gene
is at least as old as the age of the common ancestor (36). Using NCBI tax-
onomy for every species, the timing of lineage divergence events was esti-
mated with TimeTree (61). To facilitate detection of protein sequence
similarity, we used the e-value threshold of 10−3. We evaluated the minimal
evolutionary age of all protein-coding genes the protein sequence lengths
of which are between 40 amino acids and 4,000 amino acids. First, we
counted the number of genes in each phylostratum (PS), from the most
ancient (PS 1, cellular organisms) to the most recent (PS 20, R. typus). It
should be noted that, within the Rhincodontidae family (PS 18) and the
Rhincodon genus (PS 19), the whale shark is currently the only species with a
sequenced genome. Therefore, the large number of genes that appeared
species-specific (7,647 genes in phylostratum R. typus, SI Appendix, Fig. S19)
may include marginally older genes that are restricted to the genus Rhin-
codon (PS 19) or to the family Rhincodontidae (PS 18), but cannot presently
be assigned to these two phylostrata until additional high-quality genomes
are sequenced and assembled for species in these clades. To evaluate broad
evolutionary patterns, we aggregated the counts from several phylostrata
into four broad evolutionary eras: ancient (PS 1 to 7, cellular organisms to
Deuterostomia, 4,204 to 684 MYA), middle (PS 8 to 14, Chordata to Selachii,
684 to 199 MYA), young (PS 15 to 17, Galeomorpha to Orectolobiformes,
199 to 93.2 MYA), and newest (PS 18 to 20, Rhincodontidae to R. typus, 93.2
MYA to present). To estimate the gene flow per time unit, we normalized
the number of genes in an era by the age and the duration of that
evolutionary era.

Correlation Tests in Orthologous Gene Families. From these 85 species, we
selected 9,180 SCOG gene families found in at least 40 species to calculate the
correlation between gene length and three physiological properties (the
maximum lifespan, body weight, and BMR). We identified gene families that
had significant correlations between gene length and maximum lifespan
(3,521 genes), body mass (2,620 genes), and BMR (3,267 genes). The statistical
significance of correlations was evaluated by calculating Spearman’s rho (ρ)
correlation coefficient and applying the Benjamini–Hochberg adjustment
(adjusted P value ≤ 0.05). All of these gene families were subject to align-
ment filtering criterion that included more than 50% of conserved exon–
exon boundaries (intron position) in their CDS alignments. This step reduces
the effect of gene length changes due to intron gain or loss and increases
the accuracy of multiple sequence alignments (SI Appendix, Fig. S23). Finally,
we acquired four sets of gene families where we observed correlations be-
tween gene length and three properties: 1) 18 gene families in which gene
length correlated with the maximum lifespan only (SI Appendix, Table S24),
2) 3 gene families correlated with the body weight only (SI Appendix, Table
S24), 3) 7 gene families correlated with the BMR only, and 4) 148 gene
families correlated with all three physiological properties (SI Appendix,
Table S23).

Statistical Analysis. For all pairs of median values of physiological and ge-
nomic features assessed in this analysis of 85 species, the Spearman’s rank
correlation coefficient rho (ρ) values were calculated using the cor.test
package in R with the following options: method = "spearman," exact =
"true," and were plotted using the ggplot2 package. If the resulting P values
were lower than 2.2e-16, the smallest value output using this package, P <
2.2e-16, was listed, rather than an exact value. For selected pairs of values,
the plots were displayed using median values or log10-transfomed values, as
appropriate. Second, for the nine pairs of genomic and physiological fea-
tures the scaling correlations of which were evaluated in Fig. 2, the ro-
bustness of the Spearman’s correlation coefficients was calculated using a
leave-one-out jackknifing procedure (62), performed using the StatPlus
program (n = 85 species, 85 iterations). The results are reported in SI Ap-
pendix, Table S17B, where the Spearman’s correlation coefficient values (ρ)
are shown along with measures of ρ variation (minimum, maximum, and
SD). Third, the variability, skewness, and kurtosis were evaluated for all
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median values of physiological and genomic features and were also evalu-
ated for the nine Spearman’s correlation coefficient distributions generated
by jackknifing. Fourth, for every physiological and genomic feature assessed
in this analysis, pairwise comparisons between the 85 species were done as
two-sided Wilcoxon rank-sum tests and displayed as correlation matrices. All
P values were adjusted using the Benjamini–Hochberg procedure, log-
transformed, and displayed in a color scale ranging from 0.000 to 0.01;
values higher than 0.01 are shown in gray.

Scaling Analysis. The adjustment of the basal metabolic rate to mass is based
on Gillooly’s Eq. 1 (14) relating the mass-adjusted basal metabolic rate to
mass and temperature B = b0 M

–1/4 e –E/kT, where B = basal metabolic rate, b0

is a coefficient independent of body size and temperature, M = organism
mass, Ei = average activation energy for enzyme-catalyzed biochemical re-
actions of metabolism (∼0.65 eV), T = absolute temperature (for poikilo-
terms, the environmental temperature at which the organism lives; for
homeotherms, of the organism itself), and e –E/kT = Arrhenius or Boltzmann
factor, which includes k = 8.62 * 10 –5 eV·K–1 (Boltzmann constant). Fur-
thermore, we compared BMR values that were measured experimentally to
BMR values calculated with Gillooly’s Eq. 1 (14). We found a very strong
correlation between measured and calculated BMR values (SI Appendix,
Fig. S7A, Spearman’s ρ = 0.954, n = 24 species; SI Appendix, Fig. S7B, ρ =
0.935, n = 21 species excluding cattle, pig, and human, which have very

high BMRs). Since the whale shark routinely dives to cold, deep depths, we
also calculated the whale shark BMR across its temperature range (SI Ap-
pendix, Fig. S8).

Data and Materials Availability. The whale shark whole-genome project has
been deposited in the INSDC: International Nucleotide Sequence Database
Collaboration under accession no. QPMN00000000. The version described in
this paper is version QPMN01000000. DNA sequencing reads have been
uploaded to the NCBI Sequence Read Archive (SRP155581). The C++ code
used for the MCL algorithm was uploaded to the GitHub repository (https://
github.com/jsungwon/MCL-clustering).
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